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Abstract

We study the borrowing of a bank subject to rollover risk and derive impli-

cations for monetary policy transmission and financial stability. The optimal

borrowing balances the benefit of additional profitable investments with the cost

of higher bank fragility. This trade-off leads to a funding liquidity risk channel

for monetary policy transmission. While a tighter policy decreases borrowing,

its effect on financial stability depends on the interaction between a price effect

and an opposing scale effect. In particular, the price effect dominates when-

ever the risk-free rate is low, impairing financial stability. Thus, an exit from

a low-interest rate environment may increase bank fragility. We derive several

testable implications for monetary transmission and bank fragility.
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1 Introduction

Banks are important conduits for the transmission of monetary policy from central

banks to the real economy. Much of the prevailing literature suggests that banks

respond to monetary policy actions by adjusting either the amount or riskiness of

their lending (e.g., Bernanke, 2007; Dell’Ariccia and Marquez, 2013; Martinez-Miera

and Repullo, 2017). Banks are also inherently fragile institutions that are prone to

runs on their debt claims. Despite this fragility, banks heavily rely on funding that

is subject to rollover risk (e.g., short-term unsecured wholesale debt and interbank

loans) to finance investments as these markets are deeper than those for retail deposits

or equity (Adrian and Shin, 2011).1

These observations raise several important questions. First, how does rollover

risk impact a bank’s borrowing and investing decisions? Second, how do monetary

policy actions influence bank borrowing and investment in the presence of rollover

risk, and what is the impact on bank fragility? And third, how do variations in bank

equity affect the transmission of monetary policy?

In this paper, we address these questions by proposing a positive theory of the

funding liquidity risk channel of monetary policy transmission. We consider a pur-

posefully simple model to illustrate this channel. Our analysis builds on the bank-run

model of Rochet and Vives (2004) and Vives (2014). A bank issues uninsured de-

mandable debt to finance profitable investment that is costly to liquidate.2 Following

1Hanson et al. (2015) document that deposits represent over three quarters of funding of U.S.
commercial banks. Moreover, in larger commercial banks, approximately half of deposits are unin-
sured. Certificates of deposits (CDs) are a common form of unsecured short-term debt routinely
used by European banks. The market for CDs is roughly the same size as that for repos in Europe
and about ten times as large as the unsecured interbank market (Perignon et al., 2018).

2Consistent with much evidence, unsecured bank debt is assumed to be demandable. Demand-
ability is a feature of optimal debt contracts in models with uncertain liquidity needs (Diamond and
Dybvig, 1983), agency conflicts (Calomiris and Kahn, 1991; Diamond and Rajan, 2001), or expro-
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a shock to the bank’s balance sheet, concerns over the future viability of the bank can

precipitate withdrawals, requiring the bank to liquidate investments. Bank failure is

thus driven by both the exogenous balance sheet shock and losses from the costly

liquidation of investments to serve endogenous withdrawals. Moreover, individual

withdrawal incentives are further sparked by concerns about the withdrawals of other

investors, so the run on the bank is also a consequence of a coordination failure.

Using global game techniques (Carlsson and van Damme, 1993; Morris and Shin,

2003; Vives, 2005), we derive the unique equilibrium in which the bank fails if the

exogenous shock exceeds a certain threshold. This fragility threshold decreases in the

face value of debt, while the impact of greater borrowing is, in general, ambiguous.

On the one hand, when the bank borrows more, it becomes exposed to a higher risk of

a run. On the other hand, it also increases profitable investments and thereby raises

the resources available to serve its debt. The former effect dominates if the required

return of investors – and thus the equilibrium face value of debt – is sufficiently high.

In equilibrium, the bank chooses how much debt to issue (and thus its investment

scale) to maximize the expected equity value, taking into account its impact on the

failure threshold and the face value of debt. This gives rise to the following trade-off

at the heart of the funding liquidity risk channel. On the one hand, by scaling up its

investments by issuing debt, the bank earns the intermediation margin (the difference

between the investment return and the face value of debt). On the other hand, the

bank is more likely to fail because greater debt increases the banks’ susceptibility to a

run. The risk of such a run leads the bank to scale down its borrowing and investment

compared to a situation without coordination failure. (We consider this benchmark

without coordination failure throughout the paper.)

priation risk (Ahnert and Perotti, 2021). Accordingly, in what follows, we use “uninsured deposits”
to refer to short-term or demandable debt including uninsured retail deposits or wholesale funding.
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We consider how changes in monetary policy, i.e. the risk-free rate (a measure

for conventional monetary policy) and the degree of asset market liquidity (a measure

for unconventional policy), affect bank borrowing and its fragility. First, we show that

a lower risk-free rate and greater market liquidity are expansionary in the sense that

they lead to greater borrowing and investment. These results are in line with empirical

evidence of the standard bank lending channel (e.g., Bernanke and Blinder, 1992;

Stein and Kashyap, 2000). However, the mechanism in our model differs from other,

observationally equivalent theories (e.g., Peek and Rosengreen, 2013). In particular,

changes in the bank’s borrowing and investment scale constitute an optimal response

to a policy-induced change in the risk of experiencing a run. Section 6 discusses the

cross-sectional testable implications of this mechanism in more detail.

Second, we consider how changes in monetary policy stance affect financial sta-

bility. We use the bank’s fragility threshold as our measure of financial stability.

In general, changes in monetary policy exert three effects on the fragility threshold.

First, there is a direct price effect. Expansionary policy reduces funding costs or

increases asset valuations and thereby help to reduce fragility. Second, there is an

indirect scale effect whereby expansionary policy that induces the bank to increase its

borrowing and investment leads to an increase in fragility. Finally, there is an ampli-

fication effect, which captures the feedback between the risk-adjustment in the price

of debt and the bank’s default risk. This amplification effect alters the magnitude,

but not the sign, of the total effect of monetary policy on bank fragility.

To understand how monetary policy influences financial stability, we must com-

pare the price and scale effects. In general, the scale effect tends to dominate the

price effect when the level of the risk-free interest is high. Thus, in a high interest

rate environment, expansionary monetary policy increases fragility. By contrast, in a

low interest rate environment, expansionary monetary policy tends to reduce fragility.
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This latter result contrasts with the implications of the standard risk-taking channel

of monetary policy that is regularly emphasized in the policy debate (e.g., Cunliffe,

2019). In particular, our funding liquidity risk channel suggests that due to the dom-

inating price effect, an ‘exit’ from a low interest environment can be associated with

adverse consequences for financial stability.

We consider two extensions of our baseline model to probe its robustness. First,

we consider the bank to be endowed with equity. Since equity absorbs losses, it exerts

a catalytic effect on borrowing and investment: equity mitigates concerns about the

bank’s future solvency, thus reducing rollover risk and shifting bank borrowing and

lending closer to the benchmark of perfect coordination.3 Second, we study the

consequences of having a multiplicative or scale-dependent shock, which introduces

a new risk-taking incentive for the bank. Our baseline model, in contrast, assumes

an additive or scale-invariant shock to the balance sheet, as in Ahnert et al. (2019),

which allows us to better isolate the funding liquidity risk channel. We show that our

insights are robust to the introduction of risk-taking on the asset side.

Finally, our model generates empirical predictions on how rollover risk and mon-

etary policy influence bank borrowing and investment and financial stability. While

several of these are consistent with existing empirical findings, we also provide new

predictions on the cross-sectional impact of monetary policy on banks. In particular,

we argue that banks that are subject to more rollover risk, e.g., have lower Net Sta-

ble Funding Ratios, are less sensitive to changes in monetary policy. Moreover, we

discuss how one might test the impact of monetary policy on bank fragility.

3This catalytic effect is similar to that explored by Morris and Shin (2006) in an international
finance context. In their model, official sector assistance to a country in the midst of a financial
crisis can spur debtor to lend more, thereby alleviating the crisis.
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Literature. Our paper relates to several strands of the literature. The traditional

literature on the bank lending channel posits that a monetary policy tightening leads

to a shortfall of banks’ deposits and reduces lending (Bernanke and Gertler, 1995;

Stein and Kashyap, 1995; Stein, 1998; Boivin et al., 2010; Peek and Rosengreen, 2013).

Recently, Drechsler et al. (2017) suggest that banks respond to monetary policy shifts

by exercising their market power in deposit markets. We complement this literature

by arguing that banks’ responses are also shaped by rollover risk.

We also contribute to the literature on bank runs and global games. In the

unique equilibrium, the run is a consequence of a coordination failure following a

large shock to the bank’s balance sheet. In particular, we build on Rochet and Vives

(2004) where investors delegate their rollover decisions to professional fund managers,

so the decisions to roll over are global strategic complements.4 We contribute to

this literature by showing how, via the endogenous borrowing choice and face value

of debt, the effects of monetary policy on fragility engender countervailing indirect

effects, which are absent in other studies with exogenous borrowing and investment

(e.g., Vives, 2014; König, 2015; Bebchuk and Goldstein, 2011).

Our paper also connects to the literature on the risk-taking channel of monetary

policy and its implications for financial stability. Dell’Ariccia et al. (2014) study

the risk-shifting incentives of banks and argue that expansionary monetary policy

increases bank leverage and risk-taking. Martinez-Miera and Repullo (2017) consider

a ‘search-for-yield’ mechanism: when monetary policy reduces yields on safer assets

4Goldstein and Pauzner (2005) study one-sided strategic complementarity due to the sequential
service constraint of banks (Diamond and Dybvig, 1983). Liu (2016) studies how runs on banks
interact with freezes in the interbank market, giving rise to amplification. Eisenbach (2017) shows
how rollover risk from demandable debt effectively disciplines banks for idiosyncratic shocks, while a
two-sided inefficiency arises for aggregate shocks. Ahnert et al. (2019) consider how the introduction
of senior secured debt influences rollover risk and banks’ borrowing and investment choices. Carletti
et al. (2020) study the role of liquidity regulation and its interaction with capital requirements. Li
and Ma (2021) study the interaction between bank runs and falling asset prices in secondary markets
and show the desirability of a committed liquidity support by a regulator.
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compared to the interest on their long-term liabilities, financial institutions rebalance

their asset portfolios towards riskier short-term assets. Our model focuses instead on

banks’ “risk-taking on the liability side” i.e. higher failure risk stemming from funding

balance sheet expansions by increased borrowing.

2 Model

The model builds on Rochet and Vives (2004) and Vives (2014). There are three

dates t = 0, 1, 2, a single good for consumption an investment, a continuum ω > 0 of

investors and a representative bank owner / manager (henceforth banker for short).

Each investor is risk-neutral, endowed with one unit of funds at t = 0 and is indifferent

between consuming at t = 1 and t = 2. Investors can store their funds at t = 0 to

earn a (gross) risk-free return r > 0 at t = 2. The banker is penniless but has access

to illiquid investments that return R > r at t = 2 per unit invested at t = 0. However,

selling investments at t = 1 yields only a fraction ψ ∈ (0, 1) of the investment’s return.

To finance investments, the banker issues D ≥ 0 of demandable debt to investors at

t = 0 with face value F > 0. The bank’s initial balance sheet is I ≡ D, where I is

the amount invested.5

At t = 1, investors either redeem their claims against the bank or roll them

over until t = 2. Each investor delegates the rollover decision to a professional fund

manager who is rewarded for making the right decision: if the bank does not fail,

a manager’s payoff difference between withdrawing and rolling over is a cost c > 0;

if the bank fails, the differential payoff is a benefit b > 0.6 The conservatism ratio,

5For an extension with equity on the bank’s balance sheet at t = 0, see section 5.
6As an example, assume the cost of withdrawal is c; the benefit from getting the money back or

withdrawing when the bank fails is b+ c; the payoff for rolling over when the bank fails is zero.
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γ ≡ b
b+c
∈ (0, 1), summarizes these payoffs, with more conservative managers (higher

γ) being less inclined to roll over.7 For simplicity, we assume that the face value of

debt, F , is independent of the withdrawal date.

The banker is protected by limited liability and is subject to a shock A at t = 2.

This shock may improve the bank’s balance sheet, A < 0, but operational, market,

or legal risks may require writedowns, A > 0. The shock is drawn at t = 1 from a

continuous probability distribution with a decreasing reverse hazard rate, d
dA

g(A)
G(A)

< 0,

where G(A) denotes the cumulative distribution and g(A) the probability density.8

Assets Liabilities
RI − A FD

E2(A)

Table 1: Balance sheet at t = 2 after a small shock and all debt rolled over.

Table 1 shows the balance sheet at t = 2 for a small shock and when all debt is

rolled over. In this case, the value of bank equity is given by E2(A) ≡ max{0, RI −

A − FD} and the bank fails whenever A > A ≡ RI − FD. If, however, a fraction

` ∈ [0, 1] of debt is withdrawn at t = 1, the banker liquidates a share ` FD
ψRI

of the

investment to repay debt holders. As a result, the banker has insufficient resources

to repay the outstanding debt at t = 2 and fails whenever

RI − A− `FD
ψ

< (1− `)FD , (1)

7Reviewing debt markets during the financial crisis, Krishnamurthy (2010) argues that investor
conservatism was an important determinant of short-term lending behavior. See also Vives (2014).

8This property ensures a unique borrowing choice of the bank. It holds, for instance, for the
exponential, (log-)normal, and uniform distributions.
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or A > RI − FD [1 + `z], where z ≡ 1
ψ
− 1 > 0 is the per-unit cost of liquidation.9

We assume zero recovery upon bank failure at the final date.10

At t = 1, fund managers base their withdrawal decisions on a noisy private

signal (Morris and Shin, 2003):

xi = A+ εi, (2)

where εi is a mean-zero noise term that is independent of the shock A and identi-

cally and independently distributed across fund managers according to a continuous

distribution H with support [−ε, ε] for ε > 0. Table 2 summarizes the timeline.

t = 0 t = 1 t = 2

1. Debt issuance 1. Balance sheet shock realizes 1. Investment matures

2. Investment 2. Private signals about shock 2. Shock materializes

3. Withdrawals 3. Debt repayment

4. Consumption 4. Consumption

Table 2: Timeline of events.

3 Equilibrium

We solve for the symmetric pure-strategy perfect Bayesian equilibrium in which fund

managers at t = 1 use threshold strategies, i.e. rolling over if and only if their signal

indicates a healthy balance sheet, xi ≤ x∗, and the bank fails if and only if A > A∗.11

9The bank closes early if it runs out of funds at t = 1, RI − A < `FDψ . The relevant failure

condition, however, is equation (1), as in Rochet and Vives (2004) or Vives (2014).
10Our results are qualitatively unchanged for positive recovery values.
11Since we assume that private information is sufficiently precise, the equilibrium is unique (Morris

and Shin, 2003). It is also an extremal equilibrium that is in monotone strategies (Vives, 2005).
Since the rollover decision is binary, our focus on threshold strategies is without loss of generality.
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Definition 1. The symmetric pure-strategy perfect Bayesian equilibrium comprises

thresholds, x∗ and A∗, borrowing volume D∗, and face value of debt F ∗ such that

a. at t = 0, given the thresholds (x∗, A∗), the banker maximizes his expected equity

value by choosing borrowing D and the face value F , subject to a participation

constraint of investors that ensures them an expected return of at least r;

b. at t = 1, given the banker’s choices (D∗, F ∗), the threshold strategy, x∗, maxi-

mizes fund managers’ expected payoffs, given that the banker fails for A > A∗.

We solve the model backwards in two steps. First, we pin down x∗ and A∗ at

the rollover stage at t = 1. Second, we characterize the banker’s borrowing choice at

t = 0, where the banker takes into account how his choices affect rollover risk.

3.1 Rollover risk of debt

For the solution of the rollover subgame at date t = 1, we focus on the global game

solution of vanishing private noise about the balance sheet shock, ε→ 0 (Eisenbach,

2017; Ahnert et al., 2019; Carletti et al., 2020). As a result, the rollover threshold

converges to the failure threshold, x∗ → A∗. In this case, fund managers face only

strategic uncertainty about the behavior of other managers at t = 1 because the

fundamental uncertainty about the magnitude of the shock vanishes.

Proposition 1. Failure threshold. There exists a unique failure threshold A∗. All

fund managers refuse to roll over and the banker defaults if and only if

A > A∗ ≡ RI − FD [1 + γz] . (3)
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Proof. See Appendix A1.

Proposition 1 pins down the unique incidence of a run on bank debt. The failure

threshold can be expressed as A∗ = A− γzFD, so rollover risk causes a deviation of

the failure threshold A∗ from the perfect-coordination benchmark, A. In particular,

rollover risk is a consequence of the combination of fund manager conservatism, γ >

0, and asset illiquidity, ψ < 1 (or z > 0). Without rollover risk, γz → 0, the

failure threshold thus converges to its perfect-coordination benchmark, A∗ → A. We

henceforth use A∗ as our measure of bank fragility. An increase of A∗ reduces fragility

as it decreases the range of shocks (A∗,∞) for which the bank fails.

Lemma 1. Borrowing volume and fragility. An increase in bank borrowing

increases fragility, ∂A∗

∂D
< 0, if and only if debt is sufficiently expensive, F > R

1+γz
.

Proof. See Appendix A1.

Greater borrowing induces two opposing effects on the failure threshold. First,

greater borrowing allows the bank to increase the scale of its profitable investments,

∂I
∂D

= 1, which reduces fragility because it provides more resources that can be used to

repay debt. Second, because the additional borrowing may be withdrawn, it increases

the bank’s exposure to a debt run, thus heightening fragility. Note that the effective

per-unit cost of debt that impacts the bank’s fragility at t = 1 exceeds the face

value F due to the possibility that assets are liquidated at a cost when the debt

is withdrawn. This additional per-unit cost of debt is given by γzF . As shown in

Lemma 1, the second effect dominates the first if the total effective per-unit cost of

debt at t = 1, F (1 + γz), exceeds the per-unit return from the bank’s investment.

In this case, more borrowing unambiguously increases fragility. Note further, that

a higher liquidation value mitigates the influence of fund manager conservatism and
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reduces fragility, ∂A∗

∂ψ
> 0 (Rochet and Vives, 2004). Finally, with a higher face value

of debt, the bank must liquidate a larger share of assets to meet early withdrawals,

∂A∗

∂F
< 0. A higher risk-free rate does not directly affect fragility, ∂A∗

∂r
= 0.

3.2 Optimal borrowing and investment

The banker chooses the level of borrowing D and offers a face value F to investors

in order to maximize his expected equity value at date t = 2, subject to the investor

participation constraint in funding markets, the balance sheet identity, and the failure

threshold A∗(D,F ) ≡ A∗. The banker’s problem can be expressed as

max
D,F

π ≡
∫ ∞
−∞

E2(A)dG(A) =

∫ A∗(D,F )

−∞

[
RI − A− FD

]
dG(A) (4)

s.t. F G(A∗(F,D)) ≥ r, (5)

where the participation constraint in (5) states that investors’ expected return from

funding the bank must be at least the risk-free return earned on the outside option.

Since the banker’s profit function is strictly decreasing in F for all values of D, profit

maximization implies that (5) must hold with equality. Proposition 2 characterizes

the interior solution to the constrained optimization problem.

Proposition 2. Bank borrowing and debt pricing. There exists an interval

R ≡ (r˜, r̃) such that for any r ∈ R, there exists a unique interior equilibrium with

borrowing volume D∗ ∈ (0, ω) and face value F ∗ ∈ ( R
1+γz

, R).

Proof. See Appendix A2.

To understand the intuition behind Proposition 2, note that, for a given face

value F , a marginal increase in borrowing exerts two effects on the bank’s expected
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equity value, π. First, an increase in D alters the failure threshold, A∗, and the set

of shock realizations where the bank fails. As shown in Lemma 1, borrowing lowers

the failure threshold if and only if the face value is sufficiently large, F > R/(1 +γz).

Second, for a given realization of the shock, an increase in D changes the equity value

conditional on the bank not failing, (R− F )D − A. In particular, greater borrowing

increases the bank’s equity value if and only if F < R. Otherwise, debt is prohibitively

expensive and the bank incurs a loss from borrowing any amount.

Now consider the bank’s optimal borrowing whenever the face value F falls

outside of the bounds specified in Proposition 2. If debt is sufficiently cheap, F <

R/(1+γz) < R, the failure threshold and the equity value are both strictly increasing

in D. Greater borrowing increases both the likelihood that the bank does not fail and

the value of equity for any realization of the shock. In this case, the banker strictly

prefers to borrow as much as possible, D∗ = ω. Second, if debt is very expensive,

F > R, then the failure threshold and the equity value are both decreasing in D and

the bank completely abstains from any borrowing, D∗ = 0.

It follows that for an intermediate face value, R/(1+γz) < F < R, the banker’s

equity value strictly increases in D, while the failure threshold strictly decreases.

Hence, the banker’s optimal borrowing choice trades off the marginal benefit from

increasing the equity value against the marginal cost which stems from the higher

expected loss due to the increased likelihood of failure. For given F , the optimal

choice of D satisfies

R− F = −(1 + γz)FD
g(A∗)

G(A∗)

dA∗

dD
. (6)

The left-hand side of equation (6) corresponds to the net marginal benefit from an

additional unit of borrowing and investing. Conditional on not failing, the banker

obtains an additional return R and has to pay out the face value F , leaving him
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with a net marginal benefit of R − F , the intermediation margin. The right-hand

side of equation (6) is the expected loss due to a marginal change in the threshold

A∗. The term g(A∗)
G(A∗)

dA∗

dD
measures the likelihood of default following the total change

in the failure threshold conditional on not failing. The banker internalizes, via the

creditors’ participation constraint, how the marginal increase in borrowing impacts

the face value of debt, F , and thereby the failure threshold, A∗. With a slight abuse

of notation, the total effect of greater borrowing on the failure threshold is given by

dA∗

dD
=
∂A∗

∂D
+
∂A∗

∂F

dF

dD
. (7)

The losses in the event of failure on the right-hand side of (6) include the bank’s

equity value, E2(A∗) = γzFD, as well as the losses to creditors, FD, that the banker

internalizes through investor’s participation constraint.

Conditions (5) and (6) together determine the banker’s choice of borrowing and

the face value of debt. The interval R in which an interior optimum exists is derived

by using the creditors’ participation constraint to obtain thresholds such that, at

r = r˜, there is no borrowing, D∗ = 0, and at r = r̃, the banker borrows D∗ = ω.

Figure 1 shows the equilibrium. The solid line is the borrowing schedule D∗(F )

derived from Equation (6) and the dashed line, F ∗(D), is the participation constraint

(5). Given r ∈ R, the two curves intersect such that F ∗ ∈ ( R
1+γz

, R) and D∗ ∈ (0, ω).

4 Implications of monetary policy

In this section, we study the transmission of monetary policy to the banker’s invest-

ment and borrowing decisions as well as financial fragility. For simplicity, we assume
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0

Borrowing Volume (D)

Face Value (F )

ω

R
1+γz

RF ∗

D∗

Figure 1: The unique equilibrium borrowing volume and debt face value are deter-
mined at the intersection of the creditors’ participation constraint (dashed line) and
the bank’s demand for funds (solid line).

that monetary policy can directly affect the risk-free return, r, and the secondary

market value of bank assets, ψ. We refer to changes in the risk-free return as stem-

ming from ‘conventional’ monetary policy and to changes in the secondary market

value as being driven by ‘unconventional’ policy. An increase in the risk-free return is

said to follow from a tightening of conventional monetary policy, while an increase in

the secondary market value of assets is attributed to a looser unconventional policy.

We assume that monetary policy determines r and ψ at date t = 0, before the bank

makes its borrowing and investment choices.
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4.1 Benchmark: Monetary policy transmission in the ab-

sence of rollover risk

When γ = 0, fund managers are no longer subject to strategic complementarity in

their rollover decisions and inefficient runs are eliminated. Consequently, the bank

fails at t = 2 whenever A > A. Moreover, the bank borrows the maximal feasible

amount, D∗ = ω, as long as F ∗ < R, i.e., the net marginal benefit is positive.

Proposition 3. Monetary policy in the absence of rollover risk. In the ab-

sence of rollover risk, γ = 0, monetary policy generically has no effect on the bank’s

borrowing and investment scale.

In the absence of rollover risk, conventional monetary policy has no effect on the

intensive margin of the banker’s borrowing and investment scale. However, by influ-

encing the face value of debt, a change in the risk-free return can impact the extensive

margin of bank borrowing. As F ∗ increases and crosses R, following a tightening of

conventional monetary policy, the bank stops borrowing. Unconventional policy has

no effect since the bank does not require additional liquidity to serve withdrawals.

4.2 Monetary policy in the presence of rollover risk: the

funding liquidity risk channel

When γ > 0, the rollover decisions are subject to strategic complementarity. As a

result, the bank fails whenever A > A∗. Moreover, for any F ∈ (R/(1 + γz), R),

the banker optimally responds to an increase in the risk of failure by borrowing and

investing less. In other words, the presence of rollover risk gives rise to a ‘scale effect’

such that D∗ < ω. This, in turn, induces the optimal borrowing and investment level
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to respond to changes in monetary policy. As such, we refer to this channel as the

funding liquidity risk channel for the transmission of monetary policy.

Proposition 4. Monetary policy and the funding liquidity risk channel.

1. Conventional monetary policy: An increase in the risk-free return, r, increases

the face value of debt, dF ∗

dr
> 0, and reduces borrowing, dD∗

dr
< 0.

2. Unconventional monetary policy: An increase in ψ raises borrowing, dD∗

dψ
>

0. Moreover, there exists a bound, r ∈ (r˜, r̃), such that an increase in the

liquidation value ψ reduces the face value of debt, dF ∗

dψ
< 0, if and only if r < r.

Proof. See Appendix A3.

An increase in the risk-free return implies that investors require a higher face

value in order to supply funding to the bank. A higher face value, in turn, raises the

marginal cost of borrowing by increasing the likelihood of the bank failing due to run

risk. Moreover, the bank must forego greater equity value in the event of failure. The

banker, thus, responds by reducing the amount of borrowing and investment, thereby

counteracting the effect of the higher face value on the risk of a run.

Figure 2 shows the scale effect and funding liquidity risk channel of monetary

policy. It plots the banker’s optimal borrowing against the risk-free return, r. The

dashed line depicts the perfect-coordination benchmark in the absence of coordination

risk (γ = 0), while the solid line shows the case with rollover risk (γ > 0). For values

of r that are either sufficiently small (r < r˜) or sufficiently large (r > r̃), rollover risk

has no effect on the bank’s borrowing and investment scale. For intermediate values

r ∈ (r˜, r̃), however, the scale effect is present and is given by the distance between the

dashed line and solid curve. Due to the scale effect, an increase in the risk-free return
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is associated with lower borrowing as the bank trades off the net marginal benefit

against the increased likelihood of failure due to a higher borrowing scale.

0

Optimal Borrowing (D∗)

Risk-free return (r)

ω

r˜

Perfect Coordination

Benchmark

r˜ r̃

Figure 2: Rollover risk reduces borrowing relative to a perfect-coordination bench-
mark. Borrowing volume with (solid) and without rollover risk (dashed).

4.3 Monetary policy and financial stability

We next turn to the financial stability implications of monetary policy. We measure

financial stability by the bank’s failure probability. Since the ex-ante failure proba-

bility is monotonically decreasing in the failure threshold A∗, to study the effects of

monetary policy on financial stability, it suffices to consider its effects on A∗.

Unlike conventional monetary policy, which operates via the investor participa-

tion constraint, unconventional monetary policy exerts a direct effect on the bank’s

failure threshold, A∗. An increase in ψ improves the market liquidity of bank assets,

which reduces the likelihood of a run. As a consequence, for any face value of debt,

the marginal cost of borrowing decreases, and so the banker increases his borrowing

and investment level for any value of F . The increase in borrowing, however, tends to
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counteract the effect of improved market liquidity on the failure threshold. Hence, in

equilibrium, the total effect of ψ on the face value can be ambiguous. This ambiguity

leads to an interesting interaction between the level of the risk-free return and the

effect of changes in market liquidity. If the risk-free return is sufficiently large, then

the indirect negative effect on A∗ due to the increase in borrowing dominates and the

direct positive effect, which increases the equilibrium face value of debt.

The results in Proposition 4 imply that the total effects of monetary policy on

financial stability are a priori not clear. In particular, it follows from Lemma 1 that

for F ∈ (R/(1 + γz), R), the failure threshold decreases in both F and D. But since

changes in the risk-free return or the liquidation value of the assets can have opposing

effects on the face value of debt and the bank’s borrowing volume, the total effects

on the failure threshold are ambiguous.

To see this, we decompose the total effect of a marginal increase in the risk-free

return r on the failure threshold into three separate terms:

dA∗

dr
=

1

1 + g(A∗)
G(A∗)

∂A∗

∂F
F ∗︸ ︷︷ ︸

Amplification effect (+)

×

 ∂A∗

∂D

dD∗

dr︸ ︷︷ ︸
Scale effect (+)

+

Price effect (−)︷ ︸︸ ︷
1

G(A∗)

∂A∗

∂F

 . (8)

The first term in brackets is a scale effect, which affects fragility via the total ad-

justment in borrowing scale. Since dD∗

dr
< 0 and ∂A∗

∂D
< 0, it follows that the scale

effect reduces fragility. The second effect in brackets, which we refer to as the price

effect, captures the contribution of the higher face value of debt to the total effect on

A∗. Since ∂A∗

∂F
< 0, the price effect raises the bank’s fragility. Finally, the third effect

(that multiplies into the previous two effects) is an amplification that accounts for
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the fact that an increase in fragility leads, in itself, to an increase in the face value

which, in turn, further increases fragility.

For unconventional monetary policy shifts (changes in ψ), we obtain a similar

decomposition:

dA∗

dψ
=

1

1 + ∂A∗

∂F
g(A∗)
G(A∗)

F ∗︸ ︷︷ ︸
Amplification effect (+)

×

 ∂A∗

∂D

dD∗

dψ︸ ︷︷ ︸
Scale effect (−)

+

Price effect (+)︷︸︸︷
∂A∗

∂ψ

 . (9)

In contrast to conventional monetary policy, the scale effect now increases fragility

since dD∗

dψ
> 0, while the price effect reduces fragility because ∂A∗

∂ψ
> 0. The net effect

is again amplified via the failure-risk-adjustment of the face value.

As Proposition 5 shows, the impact of monetary policy on financial stability

depends on the relative magnitudes of the opposing scale and price effects. These

are, in turn, shaped by the level of the risk-free return.

Proposition 5. Monetary policy and financial stability.

1. Conventional monetary policy: There exists a unique r ∈ (r˜, r̃), where r < r̄. A

tightening of policy reduces fragility, dA∗

dr
> 0, if and only if r > r.

2. Unconventional monetary policy: A higher liquidation value reduces fragility,

dA∗

dψ
> 0, if and only if r < r̄.

Proof. See Appendix A3.

The intuition for the impact of conventional monetary policy on financial fragility

is as follow. First note that the failure threshold, A∗, is proportional to the bank’s

total funding cost, FD. Thus, at any interior equilibrium, the impact of the scale
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effect in reducing fragility increases with the face value of debt since ∂A∗/∂D =

R − (1 + γz)F < 0. At the same time, the negative impact of the price effect in-

creases with the amount of bank borrowing since ∂A∗/∂F = −(1 + γz)D. Thus,

whenever the risk-free return is sufficiently small, the face value of debt is low, while

bank borrowing is relatively high. In such a low interest rate environment, the price

effect dominates and financial fragility worsens following a tightening of conventional

monetary policy.

Conversely, in a high interest rate environment, the face value of debt, and thus

the magnitude of the scale effect, are large compared to the borrowing volume and

price effect. Consequently, an increase in the risk-free rate reduces financial fragility.

At the threshold r, the face value is such that price and scale effects wash out.

A similar intuition holds for the effect of unconventional monetary policy on

financial fragility. However, in this case, the price effect is proportional to the total

funding costs since ∂A∗/∂ψ = −γFD/ψ2. As a consequence, the magnitude of the

price effect of unconventional monetary policy is scaled up when compared to that

of conventional policy. This scaling-up, therefore, implies that a larger face value

of debt is required to render the scale and price effect equal. As such, we obtain a

larger critical threshold, r̄ > r, for the impact of unconventional monetary policy on

financial fragility.

Discussion. Rochet and Vives (2004) and Vives (2014) study the rollover subgame

at t = 1, where the face value of debt and amount of borrowing are fixed. In particular,

they show that an improvement in market liquidity conditions unambiguously reduce

fragility. Extending their analysis, we also account for how an increase in ψ affects

both the face value and the volume of debt and analyze the total effect of ψ on bank
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fragility. We, thus, generalize their results to show when the direct effect may be

dominated by adjustments in the volume and price of debt.

The financial stability implications of our funding liquidity risk channel can be

related to those of the standard ‘risk-taking channel’ of monetary policy (Dell’Ariccia

et al., 2014, 2017). Under the risk-taking channel, a reduction in interest rates leads

to a compression of banks’ charter values, which increases their incentives to invest in

riskier loans, independent of the prevailing level of the interest rate. In our derivation

of the funding liquidity risk channel, we deliberately abstracted from such risk-taking

on the asset side of banks’ balance sheet and focused on the default risk emanating

from the liability side in order to isolate the funding liquidity risk channel.

Figure 3 illustrates the financial stability implications emanating from the fund-

ing liquidity risk channel. Expansionary policies (a decrease in r or an increase in

ψ) raise bank fragility via the scaling channel whenever r > r. Thus, for ‘high in-

terest environments’ the financial stability consequences of our funding liquidity risk

channel are in line with those of the standard risk-taking channel. However, in a ’low

interest rate environment’, i.e. for r < r, expansionary monetary policy measures

exert a stabilizing influence in contrast to that from the risk-taking channel.

dA∗

dr
< 0

dA∗

dψ
> 0

dA∗

dr
> 0

dA∗

dψ
> 0

dA∗

dr
> 0

dA∗

dψ
< 0

Risk-free return (r)

r˜ r r r̃

Figure 3: Effects of conventional and unconventional monetary policy on bank
fragility for different monetary policy stances (levels of interest rates).
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To further illustrate this point, consider a monetary policy ‘exit’ from a low

interest environment. While the standard risk-taking channel would predict that

financial stability would improve, our funding liquidity risk channel implies the op-

posite, i.e., a worsening due to the dominating price effect.

5 Extensions

In this section we explore two important extensions to our baseline model. First, we

consider how the presence of equity influences the bank’s decision to issue additional

debt. And second, we show that our analysis is robust when we consider a scale-

dependent shock and additional asset-side risk.

5.1 Equity

In this section, we assume that the banker is endowed with initial equity E > 0 at

t = 0. This endowment has no effect on the analysis of the subgame equilibrium at

t = 1 except for the fact that the balance sheet identity at t = 0 now reads I ≡ D+E

and, after substituting into equation (3), the failure threshold changes to

A∗ ≡ R(D + E)− FD [1 + γz] . (10)

Since the banker invests all funds into profitable investments, the additional resources

RE > 0 at t = 2 can also be used to serve debt. Hence, equity allows the banker to

withstand larger shocks and lowers fragility, ∂A∗

∂E
= R > 0. Moreover, the presence

of equity requires to distinguish between the level of borrowing, D∗, and the level of
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investment, I∗ = D∗ + E. Proposition 6 states the resulting optimal borrowing and

investment of the banker, generalizing our previous result.

Proposition 6. Bank equity. There exist values r˜E > r˜ and r̃E > r̃ such that the

bank’s optimal borrowing is given by Equation (6), with r˜ being replaced by r˜E and r̃

replaced by r̃E. Greater equity increases borrowing, dD∗/dE > 0, makes debt cheaper,

dF ∗/dE < 0, and decreases fragility, dA∗/dE > 0.

Proof. See Appendix A4.

Bank equity exerts a catalytic effect on bank scale as Figure 4 illustrates. That

is, a marginal increase in equity induces the banker to increase borrowing and in-

vestment. Along the extensive margin, greater equity shifts the bounds r˜E and r̃E

outwards. The increase in the lower bound implies that additional equity enables the

banker to borrow the maximum D∗ = ω for a larger range of risk-free returns. The

increase in the upper bound implies that the range of risk-free returns where borrow-

ing becomes prohibitively costly shrinks. And, on the intensive margin, for any given

r ∈ (r˜E, r̃E), an increase in equity increases bank borrowing further, dD∗/dE > 0.

How does the presence of bank equity influence the pass-through of monetary

policy changes via the funding liquidity risk channel? Figure 4 conveys the main

insights. First, while both bounds, r˜E and r̃E increase following a marginal increase

in bank capital, the upper bound increases by more. Thus the gap, r̃E − r˜E, also

increases. Second, since dD∗/dE > 0 for all r ∈ (r˜E, r̃E), this suggests that, typically,

the borrowing schedule D∗(r) becomes flatter. This implies that marginal changes

in the monetary policy rate have a smaller impact on bank borrowing when banks

hold more equity. This result follows since more bank equity reduces rollover risk.

Hence, changes in monetary policy have a smaller impact on the bank’s fragility and
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Borrowing Volume (D)

Risk-free return (r)

ω

r˜

ω

r˜E

Perfect Coordination

Benchmark

r˜ r̃ r̃E

Figure 4: Equity increases the range where over which maximum borrowing takes
place and also shifts the borrowed amount outwards (dash-dotted curve). Borrowing
volume with (solid curve) and without rollover risk (dashed line).

therefore dampen the bank’s corresponding adjustment of borrowing and investment.

In Section 6, we discuss how this result may be empirically tested.

5.2 Scale-dependent shock and asset-side risk

Our preceding analysis assumed a scale-invariant (or additive) shock to the banker’s

balance sheet. This allowed us to derive the key implications of the funding liquidity

risk channel by fully abstracting from the effect of the bank’s decisions on asset-side

risk. In this section, we touch upon the robustness of our analysis when we relax this

assumption and introduce a scale-dependent (or multiplicative) shock whose impact

depends on the scale of the banker’s borrowing. Specifically, we suppose that the

investment return, R, is a random variable with distribution G(R) (density g(R))
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with an increasing hazard rate. Thus, the size of the shock experienced by the banker

depends on the scale of his investments and hence on the banker’s choice of borrowing.

Allowing for equity E > 0 on the banker’s balance sheet, the failure condition

is given by RI − `FD
ψ

< (1 − `)FD. The global games analysis continues to apply,

giving rise to a threshold such that the bank fails if and only if R < R∗. As in Rochet

and Vives (2004), this threshold becomes

R∗ =
DF

D + E
(1 + γz), (11)

where we substituted the balance sheet identity I ≡ D + E into the denominator on

the right-hand side. More borrowing increases leverage and unambiguously increases

bank fragility, ∂R∗

∂D
> 0, but at a diminishing rate, ∂2R∗

∂D2 > 0.12

The banker’s optimization problem at t = 0 is

max
F,D

∫ ∞
R∗

[R(D + E)− FD] dG(R) s.t. F (1−G(R∗)) = r. (12)

The analogue of condition (6) is now

E
[
R̃
∣∣∣R ≥ R∗

]
− F = (1 + γz)FDH(R∗)

dR∗

dD
(13)

where H(x) ≡ g(x)
1−G(x)

is the hazard rate of the investment return and dR∗/dD =

∂R∗/∂D + ∂R∗/∂F × dF/dD. The key trade-off underlying the funding liquidity

risk channel, i.e. balancing the benefit of scaling up investments with the cost of

more expensive debt and losing equity due to higher rollover risk, remains largely

unchanged. What is different, however, is that the benefit (left-hand side) now also

12The concavity of the threshold is a consequence of the scale-dependency of the shock. In contrast,
the scale-invariant threshold A∗ decreased linearly in D only if the the face value of debt was
sufficiently large (i.e. r > r).
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depends on the scale of the bank’s investment, I via the dependency of the left-hand

side on R∗. In particular, since in this case the investment itself is the source of

risk, the benefit from borrowing more is the expected return conditional on the bank

not failing. As such, the left-hand side of equation (13) also depends on the failure

threshold, R∗.

What is the influence of this additional effect on the benefits? Note that the ex-

pected return on investment increases when bank fragility increases, i.e.
dE[ R̃|R≥R∗]

dR∗ >

0, which strengthens the bank’s incentives to increase its borrowing. This suggests

that our earlier analysis with a scale-invariant shock provided a lower bound for the

effects on bank borrowing. Moreover, it allowed us to study the funding liquidity risk

channel in isolation without having to account for asset-side risk adjustments arising

from limited liability.

6 Testable implications

In this section, we present several empirical predictions from our model. First, we

briefly summarize the underlying mechanism behind the prediction. Next, for Pre-

dictions 1-3, we present supporting evidence from the existing empirical literature.

Prediction 4, on the cross-sectional implications of monetary policy, and Prediction

5, on fragility and monetary policy, have, to the best of our knowledge, not yet been

subject to empirical scrutiny and may inform future work. To this end, we comment

on possible testing strategies.

Prediction 1. Greater rollover risk reduces bank borrowing and reduces bank lending.
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Mechanism. Coordination failure and asset illiquidity give rise to rollover risk in

our model and engender bank fragility. In particular, the greater the scope for coordi-

nation failure, the greater is bank fragility. From an ex-ante perspective, the prospect

of greater bank fragility leads to an increase in the face value of debt. The bank, in

turn, responds by reducing the amount it borrows.

Supporting evidence. Prediction 1 is consistent with a number of recent empirical

findings. Jasova et al. (2018) document that a reduction in rollover risk due to the

ECB’s very long-term refinancing operations increases bank lending. Iyer et al. (2013)

find that bank lending to firms is reduced if a larger share of its funding comes from

the unsecured interbank market in which it is exposed to rollover risk. de Haas and

van Lelyfeld (2014) find that lending growth of banks slows more after a shock for

banks with higher reliance on wholesale funding. Ivashina and Scharfstein (2010) and

Cornett et al. (2011) document a larger reduction in domestic credit following the

financial crisis of 2007-08 for U.S. banks with a higher reliance on wholesale funding.

Prediction 2. A monetary policy tightening decreases bank borrowing and lending

by increasing the cost of funding.

Mechanism. Our prediction on the impact of a monetary policy tightening is a

variant of the standard bank lending channel. However, in contrast to much of the

literature that focuses on the asset-side of banks’ balance sheets, our model emphasises

the role of banks’ liabilities, in particular that of (uninsured) funding. As such, a

monetary policy tightening increases creditors’ outside option and thereby the cost

of funding which, in turn, increases the bank’s failure risk. The bank counteracts the

increased failure risk by optimally reducing the amounts it borrows and lends.
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Supporting evidence. Choi and Choi (2021) document how, following a monetary

policy tightening, U.S. banks substitute low-interest retail deposits with high-interest

wholesale deposits. But, as the substitution is not perfect, there is an overall reduction

of bank borrowing, which translates into a reduction of bank lending. Drechsler

et al. (2017) document a related result whereby a monetary policy tightening lead

to increases in the deposit rate and outflows, thereby leading to a decrease in bank

lending. Girotti (2021) also finds a similar result.

Prediction 3. The borrowing and lending by banks with greater equity is less sensitive

to a monetary policy change.

Mechanism. Greater bank equity increases the interval of risk-free rates over which

bank borrowing and lending is strictly positive. Moreover, the size of the interval

grows as bank equity increases. As a consequence, the bank’s borrowing becomes

less responsive. Thus, a marginal increase in the monetary policy rate has a smaller

impact on better-capitalized banks.

Supporting evidence. van den Heuvel (2012) finds that output growth of banking

sectors in U.S. states that have low bank capital-to-asset ratios are more sensitive to

changes in the Federal funds rate. Jiménez et al. (2012) show that monetary policy

tightening episodes have larger negative effects on bank lending for Spanish banks with

lower capital. Using a different identification strategy, Jiménez et al. (2014) show that

monetary policy cuts have a more pronounced impact on lowly capitalised banks to

lend more. Acharya et al. (2020) demonstrate that ‘full allotment’ liquidity provision

by the ECB resulted in a lowering of deposit spreads and a further extension of credit

by highly capitalised banks to their borrowers. Both these results are consistent with
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the predictions of our model wherein an increase in bank capital leads to a reduction

in the face value of debt claims and an increase in lending.

Prediction 4. Banks that are subject more to rollover risk, respond less to changes

in monetary policy.

Mechanism. This prediction stems from the following two observations. First,

an increase in rollover risk leads to an increase in the range of the risk-free rate

where bank borrowing is positive and below the perfect-coordination benchmark.

Graphically, an increase in rollover risk leads to a decrease in the lower bound, r˜,
while the upper bound, r̃, remains unchanged in Figure 2. And second, since the total

supply of funding is fixed, the schedule for the bank’s borrowing becomes, generically,

flatter. Consequently, marginal changes in the risk-free rate elicit weaker responses

in bank borrowing.

Testing strategy. Prediction 4 provides cross-sectional implications for the effects

of monetary policy on bank borrowing and investment. It may be tested in, for

example, an empirical specification where bank borrowing is regressed on measures

of monetary policy interest rates. In particular, one can interacting the dependent

variable with proxies for banks’ shares of uninsured and unsecured wholesale debt

(e.g., Net Stable Funding Ratios). Our theory predicts that the respective coefficient

should be more negative when the share of debt that is subject to rollover risk is

larger.

Prediction 5. In a low interest rate environment, a monetary policy tightening in-

creases bank fragility.
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Mechanism. In a low-interest rate environment, the bank’s funding cost is low and

the amount of borrowing is high. Thus, following a tightening of monetary policy, the

price effect dominates the scale effect, leading to higher financial fragility. Conversely,

in a high-interest rate environment, funding costs tend to be larger. This, in turn,

amplifies the impact of the scale effect, relative to the price effect, from a tightening

of monetary policy. And so financial fragility reduces.

Testing strategy. Bank fragility is, in general, difficult to measure as it incorpo-

rates both solvency risk and market illiquidity. However, one possible avenue may be

to leverage on the firm-level Liquidity Mismatch Index (LMI) proposed by Brunner-

meier et al. (2014). The LMI measures the mismatch between the market liquidity

of assets and the funding liquidity of liabilities. Bai et al. (2018) construct the LMI

index for approximately 3000 bank holding companies in the U.S., and use it to inves-

tigate their fragility. As such, one may attempt to test our prediction by regressing

the LMI against measures of monetary policy.

7 Conclusion

In this paper, we propose a funding liquidity risk channel for the transmission of

monetary policy. In a parsimonious model, banks’ uninsured debt is subject to rollover

risk. In choosing how much debt to issue, the bank balances the benefit of earning

the intermediation margin with the cost of failing due to a higher run risk.

Monetary policy operates by influencing either the opportunity cost of lending

to the bank or the liquidation value of the bank’s assets. We argue that the effects of

monetary policy on bank fragility are, in general, ambiguous and depend the prevail-
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ing interest rate environment. In particular, we show that an exit from unconventional

monetary policy can impair financial stability, resulting in higher bank fragility. Fi-

nally, we derive several testable implications of our model that are consistent with

existing evidence or may inform future empirical work.

To isolate our main channel of monetary transmission, we made several simpli-

fying assumptions with respect to the dead-weight losses borne by creditors and the

term-structure of debt. Nevertheless, one may relax these assumptions without im-

pacting the core trade-off. For example, in the event of bank failure, one can assume

that creditors obtain a pro-rata share of the bank’s liquidation value. The qualitative

effects for the transmission of monetary policy via the funding liquidity risk channel,

however, would remain unchanged.
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A Proofs

A1 Proof of Proposition 1 and Lemma 1

The proof is in two steps. First, we show that the failure threshold based on condition (1)

implies the existence of well-defined dominance regions. In these regions, fund managers

have a dominant action to roll over or withdraw irrespective of the actions of other managers.

Suppose that all debt is rolled over, ` = 0. The bank still fails if A > A = RI − FD, so

withdrawing is a dominant strategy for fund managers for x > A + ε. Similarly, suppose

that no debt is rolled over, ` = 1. The bank still does not fail if A < A ≡ RI − FD
ψ .

Thus, rolling over is a dominant strategy for x < A− ε. For A ∈ [A,A], whether the bank

fails depends on the withdrawal proportion of fund managers. If the realization of A was

common knowledge, the model would exhibit multiple self-fulfilling equilibria (Figure 5).

- A

A A

Solvent Solvent / Insolvent Insolvent

Roll over Multiple equilibria Withdraw

Figure 5: Tripartite classification of the balance sheet shock

Second, we characterize the equilibrium under incomplete information. Suppose fund

managers use a symmetric threshold strategy around x∗. For a given realization A ∈ [A,A ],

the proportion of fund managers who do not roll over debt is `
(
A, x∗

)
= Prob

(
xi > x∗

∣∣A) =

Prob (εi > x∗ −A) = 1−H
(
x∗ −A

)
. Using (1), the failure threshold A∗ solves

A∗ = RI −
(
1 + z`

(
A∗, x∗

))
FD. (A1)

For given x∗, the left-hand side of (A1) is strictly increasing in A∗ and rises from −∞ to

∞. The right-hand side is strictly decreasing in A∗ and is bounded above and below by

(1 + z)FD and FD, respectively. Hence, there exists a unique failure threshold A∗.
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The posterior distribution of the shock conditional on the private signal can be derived

using Bayes’ rule. The threshold x∗ is pinned down by indifference between rolling over and

withdrawing of a fund manager who observes xi = x∗: 1 − γ = Pr (A > A∗|xi = x∗). For

small ε, the latter can be written as γ = Pr (A < A∗|xi = x∗) = 1 − H
(
x∗ − A∗

)
. The

indifference condition therefore implies x∗ − A∗ = H−1
(
1− γ

)
. Inserting it into `

(
A∗, x∗

)
,

the withdrawal proportion at the threshold A∗ becomes `
(
A∗, x∗

)
= 1−H

(
x∗−A∗

)
= 1−

H
(
H−1

(
1−γ

))
= γ. The failure threshold A∗ stated in Proposition 1 follows immediately.

The fact that there are no other equilibria in non-threshold strategies follows from

standard arguments (Morris and Shin, 2003; Vives, 2005). It exploits the fact that the

regions above A and below A admit equilibria in strictly dominated strategies. Finally, the

partial derivatives of A∗ are immediate: ∂A∗

dF = −(1 + zγ)D < 0 and ∂A∗

dD = R− (1 + zγ)F .

A2 Proof of Proposition 2

The bank’s problem is given by (4). Denote by µ the Lagrange multiplier of the investor

participation constraint. The first-order conditions for an interior optimum are:

D :
∂L
∂D

= (R− F )G(A∗) + (µF + FDγz)g(A∗)
∂A∗

∂D
= 0 (A2)

F :
∂L
∂F

= (µ−D)G(A∗) + (µF + FDγz)g(A∗)
∂A∗

∂F
= 0 (A3)

µ :
∂L
∂µ

= −r + FG(A∗) = 0 (A4)

Combining equations (A2) and (A3) yields µ∗ = D+
(R−F ) ∂A∗

∂F
∂A∗
∂D

. Substituting µ∗ into (A2)

yields

G(A∗)

g(A∗)
=

γzFD(−∂A∗

∂D +R)

R− F
=
γz(1 + γz)F 2D

R− F
. (A5)

Equations (A4) and (A5) pin down the interior critical point (F ∗, D∗). An interior optimum

requires R/(1+γz) < F < R. Note that (A3) becomes strictly negative if F ≥ R. Similarly,

∂A∗

∂D > 0 if F < R/(1 + γz), implying that (A2) becomes strictly positive.
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The critical point (F ∗, D∗) constitutes a maximum as the bordered Hessian, evaluated

at (F ∗, D∗), is strictly positive. To see this, note that the second derivatives are given by

∂2L
∂D∂F

= (µ−D)
∂G(A∗)/g(A∗)

∂A∗
∂A∗

∂D
− G(A∗)

g(A∗)
+ (µ+ γzD)F

∂2A∗

∂F∂D
+ γzF

∂A∗

∂F
(A6)

∂2L
∂D2

= (R− F )
∂G(A∗)/g(A∗)

∂A∗
∂A∗

∂D
+ γzF

∂A∗

∂D
(A7)

∂2L
∂F 2

= (µ−D)
∂G(A∗)/g(A∗)

∂A∗
∂A∗

∂F
+ (µ+ γzD)

∂A∗

∂F
(A8)

Since µ∗ > D and R
1+γz < F < R, equations (A6) to (A8) are all negative. Using that the

participation constraint is V (F,D) = FG(A∗)− r, we further obtain:

∂V

∂F
= G(A∗) + Fg(A∗)

∂A∗

∂F
,

∂V

∂D
= Fg(A∗)

∂A∗

∂D
. (A9)

Thus, ∂V
∂D is negative for F > R/(1 + γz), while ∂V

∂F is positive when evaluated at (F ∗, D∗).

To see this, we can express ∂V
∂F = g(A∗)

[
G(A∗)
g(A∗) + F ∂A∗

∂F

]
and substitute (A5) for G/g to

get:

∂V

∂F
= g(A∗)

[
FD(1 + γz)

R− F
(F (1 + γz)−R)

]
> 0

since F > R/(1 + γz). Hence, the bordered Hessian matrix is

H =

∣∣∣∣∣∣∣∣∣∣
0 ∂V

∂F
∂V
∂D

∂V
∂F

∂2L
∂D2

∂2L
∂D∂F

∂V
∂D

∂2L
∂D∂F

∂2L
∂F 2

∣∣∣∣∣∣∣∣∣∣
> 0.

Finally, note that for F ∗ → R, the left-hand side of (A5) converges to +∞ while the right-

hand side remains bounded, implying that D∗ → 0. For F < R/(1 + γz), the first-order

necessary conditions imply that D∗ = ω. Using the participation constraint, we can derive

bounds on r, given by r˜ ≡ RG(0)/(1 + γz) and r̃ ≡ RG(0), such that for r ∈ (r˜, r̃), it

must be that F ∈ (R/(1 + γz), R). Clearly, if r > r̃, then F > R and if r < r˜, then

F < R/(1 + γz). This completes the characterization of the bank’s optimal choice.
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A3 Proof of Propositions 4 – 5

Let the vector of parameters be v = (r, ψ). The first-order condition for borrowing is

φ(D,F ;v) ≡ G(A∗)

g(A∗)
(R− F ) − γzFD

(
−∂A

∗

∂D
+R

)
= 0, (A10)

with

∂φ

∂D
=
∂A∗

∂D

d (G/g)

dA∗
(R− F ) +

(
∂A∗

∂D
−R

)
γzF < 0

and

∂φ

∂F
=
∂A∗

∂F

(
d (G/g)

dA∗
(R− F ) + 2γzF

)
− G

g
< 0.

We apply the implicit function theorem (IFT) to φ(D∗, F ∗;v) = 0 and the participation

constraint V (D∗, F ∗;v) = 0. The Jacobian of this system of equations is

J =

∂V (D∗,F ∗;v)
∂F

∂V (D∗,F ∗;v)
∂D

∂φ(D∗,F ∗;v)
∂F

∂φ(D∗,F ∗;v)
∂D

 . (A11)

At the equilibrium point (D∗, F ∗), the determinant of the Jacobian is negative, |J| < 0, since

all entries are negative except for ∂V (D∗,F ;v)
∂F > 0. Henceforth, we evaluate all expressions

at the equilibrium but suppress the arguments of the derivatives for brevity.

Risk-free return. With ∂V/∂r = −1 and ∂φ
∂r = 0, the IFT yields

dD∗

dr
= −

∣∣∣∣∣∣
∂V
∂F −1

∂φ
∂F 0

∣∣∣∣∣∣
|J|

< 0 ,
dF ∗

dr
= −

∣∣∣∣∣∣−1 ∂V
∂D

0 ∂φ
∂D

∣∣∣∣∣∣
|J|

> 0 .

Liquidation value. The parameter ψ appears via z, i.e., z ≡ 1−ψ
ψ with dz/dψ < 0.

Since ∂A∗

∂z = −γFD < 0 and ∂2A∗

∂D∂z = −γF < 0, we have ∂V
∂z = Fg ∂A

∗

∂z < 0 and ∂φ
∂z =
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(R− F )
d
(

G
g

)
dA∗

∂A∗

∂z + γFD(∂A
∗

∂D −R) + γzF ∂A∗

∂z < 0. The IFT yields dD∗

dz < 0 and because z

depends negatively on ψ, we have dD∗

dψ > 0.

The sign of dF ∗

dz is ambiguous:

dF ∗

dz
= −

(
∂V
∂z

∂φ
∂D −

∂V
∂D

∂φ
∂z

)
|J|

=
g(A∗)(F ∗)2(1 + γz)2 ∂A∗

∂z

(
R(1+2γz)
(1+γz)2

− F ∗
)

|J|
R 0 ⇔ F ∗ Q F

(A12)

where

F ≡ R(1 + 2γz)

(1 + γz)2
. (A13)

Observe that F ∈
(

R
1+γz , R

)
. Evaluating (A5) at F yields the corresponding debt level D.

Evaluating the participation constraint at (F ,D) yields r ∈ (r˜, r̃) which solves V (D,F ; r) =

0. F and D are independent of r. Since F ∗ strictly increases in r, it follows that dF ∗

dγ < 0 if

and only if r > r, where r > r. Since z depends negatively on ψ, we have dF ∗

dψ R 0 ⇔ r R r.

Total effects on fragility. The total effects of v on fragility can be computed directly

from the participation constraint FG(A∗)− r = 0. We have

dA∗

dψ
= −G(A∗)

g(A∗)

dF ∗

dψ

F ∗
and

dA∗

dr
= −G(A∗)

g(A∗)

dF ∗

dr −
1

G(A∗)

F ∗
.

It follows immediately from (A12) and the previous result that

dA∗

dψ
> 0 ⇔ r < r.

41



Next, consider dA∗

dr . Substituting for dF ∗/dr (using the previous results) and re-arranging,

we obtain

dA∗

dr
∝ ∂φ

∂D
− |J|
G(A∗)

= −∂A
∗

∂F

∂φ

∂D
+
∂A∗

∂D

∂φ

∂F

=
∂A∗

∂F

(
−∂A

∗

∂D
+R

)
γzF ∗ + 2γzF ∗

∂A∗

∂F

∂A∗

∂D
− γzF ∗D∗∂A

∗

∂D

−∂A∗

∂D +R

R− F ∗

=
γzF ∗

R− F ∗

(
−∂A

∗

∂D
+R

)(
∂A∗

∂F
(R− F ∗)−D∗∂A

∗

∂D

)
+ 2γzF ∗

∂A∗

∂D

∂A∗

∂F

=
γzF ∗(1 + γz)F ∗

R− F ∗

(
∂A∗

∂F
(R− F ∗)−D∗∂A

∗

∂D
− 2D∗(R− F ∗)

F ∗
∂A∗

∂D

)
∝RD∗ (F ∗ + (1 + γz)F ∗ − 2R) = (2 + γz)RD∗(F ∗ − F ),

where

F ≡ R

1 + γz
2

. (A14)

Note that the first line follows by substituting the Jacobian, the second line follows from

using optimality condition (A5) to substitute for G(A∗)/g(A∗) and substituting the expres-

sions for ∂φ/∂F and ∂φ/∂D and the fifth line follows after substituting the expressions for

∂A∗/∂D and ∂A∗/∂F and re-arranging.

Observe that F ∈ (R/(1+γz), R). Evaluating (A5) at F yields the corresponding debt level

D. Evaluating the participation constraint at (F ,D), we obtain a critical value r ∈ (r˜, r̃)
that solves V (D,F ; r) = 0. Observe further that F and D are independent of r. Since F ∗

strictly increases in r, it follows that F ∗ > F and therefore dA∗

dr > 0 if and only if r > r.

A4 Proof of Proposition 6

The failure threshold follows from substituting I = D+E in equation 3. Moreover, the proof

of Proposition 2 continues to apply except for the generalized bounds r˜E and r̃E because E

enters A∗ and E2 linearly, so the first-order conditions in Appendix A2 hold. To calculate

the bounds r˜E and r̃E , observe that for F = R
1+γz , the first-order conditions still imply
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D∗ = ω and thus A∗ = RE. The investor participation constraint implies r˜E = RG(RE)
1+γz .

By the same logic, for F ≥ R, the FOCs imply D∗ = 0 and thus r̃E = RG(RE). Hence

r˜ < r˜E and r̃ < r̃E because G(·) monotonically increases. The comparative statics of these

bounds with respect to equity follow immediately.

To compute the comparative statics of (D∗, F ∗, A∗) w.r.t. equity, note that E enters

only via A∗, so equations (A10) and (A11) still apply. The partial derivatives with respect

to E are given by ∂φ
∂E = d(G/g)

dA∗
∂A∗

∂E (R− F ) and ∂V
∂E = gF ∂A∗

∂E . Hence:

dD∗

dE
= −

∣∣∣∣∣∣
∂V
∂F

∂V
∂E

∂φ
∂F

∂φ
∂E

∣∣∣∣∣∣
|J|

> 0,
dF ∗

dE
= −

∣∣∣∣∣∣
∂V
∂E

∂V
∂D

∂φ
∂E

∂φ
∂D

∣∣∣∣∣∣
|J|

< 0,

where the sign of the latter expressions follows from ∂V
∂E

∂φ
∂D−

∂V
∂D

∂φ
∂E = −g(F ∗)2γz(1+γz)R <

0. Finally, as E enters the participation constraint only via A∗, we have dA∗

dE = − G
gF

dF ∗

dE > 0.
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